
Using Recurrent Architectures to Generalize From Easy to Hard Problems in
Image Denoising

Naveen Raman 1 Andrew Mao 1 Vatsal Agarwal 1 Aman Jaiman 1

Abstract
Machine learning algorithms should be robust
to domain shifts; one type of shift is when the
test data is more difficult than the data seen at
train time. To tackle this, we propose the prob-
lem of easy-to-hard generalization for image de-
noising, and develop a noisy image dataset with
varying levels and types of noise. We find that
a recurrent architecture is significantly smaller
than state-of-the-art models while achieving only
a small drop in performance. We incorporate
denoising-specific methods, such as dynamic fil-
ters and perceptual loss, and demonstrate that this
combination outperforms state-of-the-art models.
Our work highlights that recurrent networks can
reduce the model size and improve performance
when task-specific modules are incorporated.

1. Introduction
A critical feature of intelligent systems is the ability to
generalize to unseen environments. Humans can logically
extrapolate to solve new and challenging problems by as-
sembling known rules into complex strategies (Son et al.,
2008), and such extrapolation to new problems is desirable
for machine learning systems. In particular, robust machine
learning systems should ideally be able to generalize to
more difficult problems.

Previous work has employed techniques such as meta learn-
ing (Li et al., 2018) and fine tuning (Sun et al., 2019) for
generalization. However, many of these methods require ad-
ditional data from testing distributions to augment training,
which might not always be available. Another approach is
the use of recurrent “deep-thinking” networks, which can be
run for arbitrary amounts of time, allowing for varying com-
putational power based on task difficulty (Schwarzschild

1Department of Computer Science, University of Maryland.
Correspondence to: Andrew Mao <amao1@umd.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

et al., 2021). This approach has proven effective on simple
problems, like prefix sums and mazes, but has not yet been
applied successfully to more complex tasks.

We propose the task of easy-to-hard generalization for im-
age denoising, a common task in computer vision that’s
more difficult than prefix sums or mazes, and develop a
dataset consisting of images with varying levels and inten-
sities of noise. We apply a general recurrent architecture
to denoising, and compare the extrapolation behavior of
the architecture with state-of-the-art denoisers. Finally we
incorporate denoising-specific features, such as perceptual
loss and dynamic filters, to show that general recurrent ar-
chitectures can be adapted to the task at hand, combining
small models with good performance. 1

Our contributions are the following. We:

1. Formalize the problem of easy-to-hard generalization
and apply it to image denoising by developing a dataset
consisting of noisy images of varying difficulty.

2. Develop recurrent models for denoising and show that
they reduce the model size significantly compared to
feedforward baselines, while only suffering a small hit
in performance.

3. Incorporate vision-based features into the model train-
ing and architecture, such as perceptual loss and dy-
namic filters, and show that a combination of these
features improves upon state-of-the-art models.

2. Related Works
Image denoising includes different types of noise, including
salt-and-pepper and Gaussian noise. Common techniques
for denoising include the use of filters, such as Gaussian fil-
ters (Liang et al., 2021) and median filters (Shrestha, 2014).
Other models use deep learning techniques, such as Convo-
lutional Neural Networks (CNNs) (Tian et al., 2020). Our
work can be viewed at the intersection of both of these tech-
niques, leveraging neural techniques along with classical
filters to perform denoising.

1Our code and data is publicly available at https://
github.com/Maosef/deep-thinking

https://github.com/Maosef/deep-thinking
https://github.com/Maosef/deep-thinking


Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Figure 1. We show images with various amounts of salt-and-pepper (top) and Gaussian noise (bottom). Note how images become less
recognizable as the noise level increases, corresponding to the increased difficulty of denoising.

Adaptive computation time (ACT) is a technique that al-
lows a recurrent model to run a variable number of iterations,
determining stopping time dynamically. Graves (2016) in-
troduced the technique and used a learned halting unit to
determine when to stop, penalizing the model for think-
ing longer. Improvements include a differentiable form of
ACT (Eyzaguirre & Soto, 2020) and the use of an explo-
ration loss term (Banino et al., 2021). These models found
improved performance in tasks such as question answering
and parity, in addition to faster inference. Our work focuses
more on logical extrapolation, instead of early stopping
or faster inference. We also use a recurrent convolutional
architecture rather than one based on transformers.

Logical extrapolation is the task of generalizing to prob-
lems that are more computationally complex than those
seen at train time. Schwarzschild et al. (2021); Anonymous
(2022) uses recurrent models that process the entire input
at each processing step. They find excellent extrapolation
performance on solving prefix sums and mazes, but little to
no extrapolation on more complex problems, such as chess
puzzles. Banino et al. (2021) also achieves logical extrapo-
lation on the parity task. Our work extends these previous
methods of logical extrapolation to image denoising, a more
complex task.

3. Problem Formulation
We formally define the problem of easy-to-hard general-
ization, using this notation for the remainder of the paper.
Our goal, informally stated, is to train a model, f , on “easy”
examples, and evaluate it on “hard” examples by running
the model for more iterations. Running for more iterations
on hard examples allows for extra computation, which can
potentially improve performance. We define easy and hard
examples by considering a function, D(S), that outputs
a difficulty metric for subsets of data points. For exam-

ple, suppose we have k difficulty classes, d1, d2, · · · dk,
where each difficulty class is a subset of questions. We
let D(di) < D(dj) imply that di is easier than dj , and order
difficulty classes so d1 is the easiest and dk is the hardest.
Our goal is to train on an easy subset, se = {d1 · · · di} and
test on a hard subset sh = {di+1 · · · dn}, where all diffi-
culty classes in se are easier than all difficulty classes in
sh. If we let L denote some loss function and E denote an
evaluation function, then we can state our goal as finding a
function f that minimizes

1

n

∑
di∈se

∑
x,y∈di

L(f(x), y), (1)

where n is the number of data points. We evaluate the
success of f by computing

1

n

∑
di∈sh

∑
x,y∈di

E(f(x), y) (2)

Note that the evaluation function, E, is not necessarily the
loss function, L. We want our loss function to encourage
generalization, while the evaluation function is purely an
assessment of task performance, and so the loss function
can include extra terms to improve generalization.

We focus on the task of image denoising, which involves the
replacement of noisy pixels. We decide to stick to one diffi-
culty class for easy data, and test on all classes for hard data,
though only report performance on 0.3 bits. We use two def-
initions of noise, salt-and-pepper noise and Gaussian noise,
and detail our data generation procedure in Section 6.1. (Fig-
ure 1) shows examples of noisy images for varying levels
of noisiness. Our evaluation function is the peak signal-to-
noise ratio (PSNR) metric, which measures the difference
between two images using MSE. Our evaluation function is



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

then

E(x, y) = 10log(
2552

MSE(x, y)
)

4. Deep-Thinking Architecture
To solve the problem of easy-to-hard generalization, we
build on prior work that developed a recurrent architec-
ture (Schwarzschild et al., 2021), which we call the “vanilla”
deep-thinking model.

The “vanilla” deep-thinking model is a fully convolutional
network, with a recurrent block, which is a series of residual
layers (He et al., 2016). This residual block is repeated N
times, where N can be varied, with larger N for harder
problems. Mathematically, we represent this as

fN (x) = h(rN (p(x), x)) (3)

where p is a projection layer that takes the image to fea-
ture space, and h is a head that projects the features into
image space. Running the recurrent block N times results
in N thoughts, t1 · · · tN , which are the intermediate images
produced by the model. We show this visually in Figure 2.

We refer to the number of convolutional layers applied in a
recurrent network as its “depth”, and refer to the number of
feature maps produced by each convolution as its “width.”

We incorporate two features from prior work (Anonymous,
2022): recall and progressive loss. Recall concatenates a
copy of the input at each step of the recurrent block. Prior
work showed that adding recall was found to be important
to the stability of the model across iterations; intuitively, it
allows the model to look back at the problem at any time
and reproduce features that may have been corrupted over
many iterations.

The progressive loss term has the purpose of encouraging
the system to learn iteration-agnostic behavior. To compute
the progressive loss, the model is first run for N thoughts,
producing thoughts t1 · · · tN . The model is then re-run,
with the starting input being tN , and the model is run for k
iterations, where k is a random number. Backpropagation is
then only done using these k iterations.

Our combined loss function is then

(1− α)Lfixed + αLprog, (4)

where Lfixed, is the loss after N iterations, and α is a hyper-
parameter which weighs the loss terms. Both the fixed and
progressive loss is the MSE of the output and target.

thoughts, t1 · · · tN , which are the intermediate images pro-
duced by the model. We show this visually in Figure 2.

We refer to the number of convolutional layers applied in a
recurrent network as its “depth”, and refer to the number of
feature maps produced by each convolution as its “width.”

We incorporate two features from prior work (Anonymous,
2022): recall and progressive loss. Recall concatenates a
copy of the input at each step of the recurrent block. Prior
work showed that adding recall was found to be important
to the stability of the model across iterations; intuitively, it
allows the model to look back at the problem at any time
and reproduce features that may have been corrupted over
many iterations.

The progressive loss term has the purpose of encouraging
the system to learn iteration-agnostic behavior. To compute
the progressive loss, the model is first run for N thoughts,
producing thoughts t1 · · · tN . The model is then re-run, with
the starting input being tN , and the model being run for k
iterations, where k is a random number. Backpropagation is
then only done using these k iterations.

Our combined loss function is then

(1− α)Lfixed + αLprog, (5)

where Lfixed, is the loss after N iterations, and α is a hyper-
parameter which weighs the loss terms. Both the fixed and
progressive loss is the MSE of the output and target.

5. Model Additions
We experiment with changes to the loss function and ar-
chitecture, intending to improve extrapolation or denoising
performance.

5.1. Similarity Loss

To enforce gradual progression of thoughts from noisy to
clean, we add a similarity loss, which penalizes based on the
distance between input and thought, where the weighting
of the thought decreases as thoughts progress from input to
output. Formally, we define the similarity loss as

Lsim =

n−1∑
i=1

γiL(X, ti), (6)

where L is a loss function, such as MSE, ti are the thoughts,
and γ is a hyperparameter that weighs similarity loss for
different thoughts. Enforcing this loss constrains thoughts
so they don’t diverge too far from the original input, while
also ensuring gradual progression. Doing so can potentially
improve generalization, as models learn to incrementally
think rather than solve the problem during early epochs,
which can be useful as problem difficulty increases.

5.2. Perceptual Loss

We incorporate perceptual loss functions to more accurately
compare image distances. Perceptual loss functions use hid-
den layers from pre-trained image classification networks,



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Figure 2. Our “vanilla” deep-thinking models relies on a recurrent block that’s repeated N times. Repeated application of the recurrent
block reduces noise, with each output from the residual block representing one “thought”

and compare L2 loss between image embeddings in the
hidden layer (Johnson et al., 2016). Previous uses for per-
ceptual loss include image sharpening (Zhou et al., 2020)
and style transfer (Johnson et al., 2016). For our experi-
ments, we use the hidden layer from a VGG classification
network (Simonyan & Zisserman, 2014), and represent our
overall loss as

(1− α)Lacc + αLprog + λLsim + βLperc, (7)

where Lperc is the perceptual loss, and α, β, γ are hyperpa-
rameters weighting the various loss functions.

5.3. Median Filters

Influenced by prior work which demonstrated the effective-
ness of median filters for denoising (Liang et al., 2021), we
incorporate median filters into the recurrent block of the
deep-thinking model. We develop a median convolution
layer (Liang et al., 2021), which combines convolution with
median pooling, and incorporate this as the first operation
in the recursive block. Medians naturally arise in denoising,
as they allow for a replacement of noisy values with infor-
mation from adjacent pixels, essentially smoothing out the
image.

5.4. Dynamic Filters

We attempt to improve upon median filters through dynamic
filters, which can learn patch-specific filters for an image.
Inspired by Li et al. (2021), we model our dynamic filter
generation using the involution architecture. Essentially,
we transform k2 1x1 filters into one k × k filter. Please
refer to Li et al. (2021) for more details. For our purpose,
dynamic filters allow the network to learn which filters to
apply depending on pertinent image properties; different
filters are needed to denoise an image based on the noisiness
of the image.

6. Experiments
We describe our experiments which quantify the perfor-
mance of models on easy-to-hard generalization. Our results
show that incorporating new vision-specific features can sig-
nificantly improve performance, and that general recurrent
architectures can be fine-tuned for complex tasks.

6.1. Datasets

We develop two datasets: one based on salt-and-pepper
noise, and another based on Gaussian noise. 2 We de-
velop two salt-and-pepper noise datasets, one using CI-
FAR10 (Krizhevsky et al., 2009), and another using Tiny-
ImageNet (Le & Yang, 2015), while for Gaussian Noise,
we develop a dataset using CIFAR10. We report all model
results using CIFAR10, as we found similar results between
CIFAR10 and TinyImageNet.

For the salt-and-pepper noise, we develop images with noise
varying from 0.1 to 0.5 in increments of 0.1. For a noise
level of 0.1, each pixel has a 10% chance to become cor-
rupted, where pixels are flipped to either white or black
uniformly. We develop these images under the assumption
that noisier images are harder, which is reflected by de-
creases in performance by state-of-the-art models as noise
level increases (Liang et al., 2021).

For Gaussian Noise, we perturb every pixel accord-
ing to a normal distribution N(0, σ), where σ is in
{0.05, 0.1, 0.15, 0.2, 0.3} and pixels are clipped between
0 and 1. Gaussian noise allows us to test whether the type of
noise added impacts the success of deep-thinking models.

2Our salt-and-pepper dataset is available at
https://drive.google.com/drive/folders/
1MzBZo0ucUeJP1kdupq27ciNsV04nZUg5?usp=
sharing

https://drive.google.com/drive/folders/1MzBZo0ucUeJP1kdupq27ciNsV04nZUg5?usp=sharing
https://drive.google.com/drive/folders/1MzBZo0ucUeJP1kdupq27ciNsV04nZUg5?usp=sharing
https://drive.google.com/drive/folders/1MzBZo0ucUeJP1kdupq27ciNsV04nZUg5?usp=sharing


Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Model #Parameters PSNR (easy) PSNR (hard)
DnCNN (SOTA) 669,312 25.18 23.40
CNN+median filters (SOTA) 3,563,011 23.61 21.91
CNN baseline 84,960 24.92 19.92
DT baseline (ours) 27,360 25.46 21.01
DT+similarity loss 27,360 22.53 17.29
DT+perceptual loss 27,360 29.57 21.51
DT+median filter 27,360 19.76 18.30
DT+dynamic filter 27,487 25.27 22.97
DT+dynamic filters+perceptual loss 27,487 28.98 25.30

Table 1. Comparison of models on CIFAR with salt-and-pepper noise. The recurrent deep-thinking model with dynamic filters and
perceptual loss outperforms state-of-the-art with substantially fewer parameters.

Figure 3. We show how various models perform as the task diffi-
culty increases. Our DT model with perceptual loss and dynamic
filters (orange) outperforms a state-of-the-art model (DnCNN)
when tested on unseen noisier images, up to 50% pixel corruption.

6.2. Baseline Models

We establish the difficulty of easy-to-hard generalization
by evaluating state-of-the-art denoisers on our salt-and-
pepper dataset. We list experimental details in Section A.
We compare two models: DnCNN (Zhang et al., 2017)
and CNN+median filters (Liang et al., 2021). DnCNN
was designed for Gaussian denoising and consists of a
series of convolution-batch normalization-ReLU layers.
CNN+median filters combine CNNs with Median Filters
and consist of 16 residual blocks, each with a median layer
in between, and then another 16 residual blocks with no
median layers. CNN+median filters are currently the state-
of-the-art salt-and-pepper denoiser. Finally, we train a base-
line CNN model, which is simply a feed-forward CNN not
fine-tuned for denoising, as another baseline.

6.3. Deep-thinking models

We compare deep-thinking models to baseline state-of-the-
art models on salt-and-pepper noise.

6.3.1. DEEP-THINKING PERFORMANCE

We compare performance on easy and hard images in Ta-
ble 1. We find that state-of-the-art models are significantly
larger than deep-thinking models. We also find that, while
deep-thinking models perform worse than both DnCNN
and CNN+median filters on hard images, their performance
is within a couple of points in PSNR. Additionally, deep-
thinking models perform better than a baseline CNN on both
easy and hard tasks. That is, without any denoising-specific
modifications, we find that deep-thinking models perform
only slightly worse than state-of-the-art, while significantly
reducing model sizes.

6.3.2. RECALL AND PROGRESSIVE LOSS

Recent work (Anonymous, 2022) found that introducing
recall and progressive loss can improve the performance of
deep-thinking models (Section 4); we evaluate these claims
on denoising, and find that recall can significantly improve
denoising models. In particular, we find significant instabil-
ity when training without recall. This instability manifests
itself as the model only being able to learn greyscale im-
ages, and in some cases, the model fails to learn anything
at all. Introducing recall allows recurrent blocks access to
the original input, which reduces instability and improves
performance in practice.

We run experiments comparing the impact of progressive
loss by varying α in {0, 0.5, 1}. We compute the PSNR
for each thought, and find that large values of α essentially
regularize thinking so thoughts converge quickly (Figure 6).
However, smaller values of α allow for thinking progression,
as PSNR increases even past the training regime, where the
training regime refers to the first 5 thoughts.



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

6.3.3. MODEL EXTRAPOLATION

The intuition behind deep-thinking models is that additional
thinking iterations should improve performance, however,
in practice, we find this is dependent on α. During training,
we run the model for five thinking iterations, and so ideally,
we want to see extrapolation beyond this training regime,
where performance increases after five iterations. However,
in practice, we fail to see such extrapolation for large α,
but see some form of convergence for α = 0, as PSNR
increases even after 5 iterations. However, for α = 0, we
note that PSNR decreases then increases, with the sharp
decrease occurring at the end of the training regime.

6.3.4. PERFORMANCE ON HARDER IMAGES

As expected, we find that model performance decreases
with increased image noisiness, and we see a roughly linear
relationship between image noisiness and PSNR (Figure 3).
We see that DnCNN performs better than all models for
very difficult images, with 0.5 noisiness, but our model
with perceptual loss+dynamic filters outperforms all other
models for difficulties between 0.1 and 0.4. However, we
also note that our perceptual loss+dynamic filters model
decreases in PSNR faster than all other models; improving
this should be investigated by future work.

6.4. Model Addition Performance

We add a variety of filters and loss functions to our baseline
deep-thinking model, and note our primary takeaways for
each type of addition. We note results for each addition in
Table 1 and plot thought progressions for each addition in
Figure 7.

1. Similarity loss may abruptly denoises images - We
see through qualitative analysis that when using sim-
ilarity loss, thoughts stay similar to the input for the
first several inputs, then suddenly switch over to be-
ing denoised. This might be because, after a certain
point, the weighting for similarity noise, γi, is less the
weighting for fixed noise, 1 − α, making denoising
performance more important than similarity to input.

2. Perceptual loss improves performance, especially
for easier problems - We find that incorporating per-
ceptual loss can boost performance across difficulty
classes. This effect is especially pronounced for 0.1
noisiness images, where performance is improved by 4
PSNR compared to the deep-thinking baseline.

3. Median filters fail to perform adequately - We find
that, through both quantitative and qualitative results,
that median filter models perform poorly. Part of this
arises from the nature of model training; median filter
training is time-consuming (Section 5.3), making it

difficult to fine-tune models for these filters.

4. Dynamic filters improve performance marginally
while boosting extrapolation - While overall PSNR
for models using dynamic filters is comparable to
vanilla deep-thinking models, dynamic filters tend to
increase PSNR beyond the training regime. Though
the increase is not large, it shows how custom filters
can adapt based on the noisiness of the image.

We additionally try combining filters with loss functions,
and find that combining perceptual loss with dynamic filters
can boost model performance, making it on-par with or
better than state-of-the-art models. We note two takeaways
from these experiments

1. Perceptual loss works well with dynamic filters -
Perceptual loss functions improve performance, espe-
cially on easy images, while dynamic filters help with
generalizations, as extra thinking iterations improve
model performance. By combining both of these, we
find that model performance increases across the board
(Figure 3), and outperforms state-of-the-art by 2 PSNR.
This shows the impact that task-specific features can
have on recurrent models, allowing them to outperform
state-of-the-art.

2. Model additions exhibit instability between random
seeds - We find that our perceptual loss + dynamic filter
model varies across random seeds. For some values
of a random seed, our model fails to learn anything,
and the reason why is unknown. We report values in
Table 1 for a fixed random seed.

6.5. Model Visualizations

To better understand the model results, we visualize the
feature activations of our recurrent block for each model
configuration. Specifically, we examine both the spatial
and channel activations. These visualizations are shown in
Figure 8. Furthermore, we also analyze the feature gradients
for the recurrent block, which are shown in Figure 9.

Examining the forward feature activations, we find that
for all configurations, the model activations do not capture
the entire foreground object (specifically the deer). Rather,
they seem to focus on only the central and more lit-up area.
Moreover, we observe that the use of the recurrent block
seems to elicit little change in the spatial and channel fea-
ture activations after the first few iterations. This relates to
our discussion of model extrapolation as we see that more
iterations of the recurrent block do not lead to significant
refinement of the deep features, so future work is needed
to improve this type of thinking. We do see, however, that
there is a large variance between our different model config-
urations.



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Figure 4. We plot PSNR and intermediate visualizations for our
best model, which combines perceptual loss and dynamic filters.

For the gradient activations, we note that most focus is paid
towards the background of the image. This could perhaps
be due to this region containing more noise, compared to
the foreground. While most of the model configurations
show similar gradient activations, it is worth noting that the
median filter model has extremely dense activations as the
map is completely saturated. This could explain the poor
results of this configuration.

6.6. Extension to Gaussian Noise

We apply our deep-thinking model to Gaussian noise, to
see the impact that other definitions of difficulty have on
model performance. We train our vanilla deep-thinking
model on a Gaussian noise dataset with σ = 0.1, and test
on all difficulties. We find that, regardless of task difficulty,
models trained on Gaussian noise tend to converge within a
few iterations, and fail to improve past the training regime
(Figure 5). These results explore the performance of deep-
thinking for other types of noise, and demonstrate that the
inability of deep-thinking models to improve beyond the
training regime is a function of the model itself rather than
our definition of noise. However, this might change if addi-
tions such as perceptual loss or dynamic filters are used with
Gaussian filters, which would be interesting future work.

7. Discussion
Our results indicate that it is possible to use recurrent net-
works to reduce model size without significantly impacting
performance. As models become larger (Ash), our results
show that there is still room to improve small models. By
adding various features to the model and loss function, we
show that our smaller recurrent network can be competitive
with larger state-of-the art models.

7.1. Threats to Validity

The results reported in this paper were largely done using
salt-and-pepper noise with the CIFAR10 dataset. Although
we experimented with other datasets and types of noise, and
found similar results, it is unknown whether our methods
generalize well across all types of noise and datasets.

We were unable to find strong extrapolation behavior beyond
the training regime for noisier images, which challenges the
ability of deep-thinking to work for more complex tasks.
The reasons for this are unclear; there could be a number
of reasons, such as insufficient hyperparameter tuning, an
improper loss function, or because the problem is not suit-
able for extrapolation. There is evidence that the model is
not learning an iterative process, as the bulk of the gain in
PSNR of our models comes after just a few iterations.

There is evidence that dynamic filters enable a small amount
of extrapolation outside the train regime; further work is
needed to investigate this.

Finally, our perceptual loss and dynamic filter models ex-
hibited instability, so we reported results from the same
random seed across runs. When we tried to average runs
over multiple seeds, we ran into memory-related issues,
which originates from bad model initialization; the way to
fix this is unclear and is left for future work.

7.2. Future Work

Future work is needed to study and characterize the types of
problems that the deep-thinking paradigm works on. Sim-
ple extensions include testing our models on other types of
noise, such as patch-based or adversarial noise. The easy-



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

to-hard paradigm could be applied on other tasks in vision,
such as segmentation, inpainting, unscrambling, and classi-
fication. More work could be done to examine the scaling
behavior of our recurrent models, and whether techniques
from model distillation can be applied to further shrink the
model. Finally we could examine the impact of different
combinations of training and testing difficulties; for exam-
ple, train on harder data, or including a small amount of
hard data in the training set.

8. Conclusion
We develop a dataset to assess the generalization of models
from easy to hard examples in denoising. We find that using
a recurrent architecture for denoising reduces model sizes
while minimally impacting performance. Modifications to
the loss function and the incorporation of dynamic filters
can further boost performance and generalization, showing
how task-specific fine-tuning can improve general recurrent
models. Our results show the application of recurrent mod-
els for easy-to-hard generalization, which future work can
expand to other tasks and problems.



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Ethical Impact
We address model complexity by developing a method that
reduces complexity significantly while achieving similar
performance on denoising. Large models lead to environ-
mental degradation through carbon emissions (Bender et al.,
2021). While our model takes steps towards reducing model
size, future work is necessary to further reduce sizes to
minimize the environmental impact of deep learning.

References
Anonymous. Thinking deeper with recurrent networks:

Logical extrapolation without overthinking. In Submit-
ted to The Tenth International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=kDF4Owotj5j. under review.

Ash, T. Machine learning is getting BIG.
https://www.speechmatics.com/blog/
machine-learning-is-getting-big-part-i/.
Accessed: 2021-12-09.

Banino, A., Balaguer, J., and Blundell, C. Pondernet: Learn-
ing to ponder. arXiv preprint arXiv:2107.05407, 2021.

Bender, E. M., Gebru, T., McMillan-Major, A., and
Shmitchell, S. On the dangers of stochastic parrots: Can
language models be too big?. In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Trans-
parency, pp. 610–623, 2021.

Eyzaguirre, C. and Soto, A. Differentiable adaptive com-
putation time for visual reasoning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12817–12825, 2020.

Graves, A. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for
real-time style transfer and super-resolution. In European
conference on computer vision, pp. 694–711. Springer,
2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Learn-
ing to generalize: Meta-learning for domain generaliza-
tion. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Li, D., Hu, J., Wang, C., Li, X., She, Q., Zhu, L., Zhang,
T., and Chen, Q. Involution: Inverting the inherence of
convolution for visual recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12321–12330, 2021.

Liang, L., Deng, S., Gueguen, L., Wei, M., Wu, X., and Qin,
J. Convolutional neural network with median layers for
denoising salt-and-pepper contaminations. Neurocomput-
ing, 442:26–35, 2021.

Schwarzschild, A., Borgnia, E., Gupta, A., Huang, F.,
Vishkin, U., Goldblum, M., and Goldstein, T. Can you
learn an algorithm? generalizing from easy to hard prob-
lems with recurrent networks, 2021.

Shrestha, S. Image denoising using new adaptive based
median filters. arXiv preprint arXiv:1410.2175, 2014.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Son, J. Y., Smith, L. B., and Goldstone, R. L. Simplicity
and generalization: Short-cutting abstraction in children’s
object categorizations. Cognition, 108(3):626–638, 2008.

Sun, C., Qiu, X., Xu, Y., and Huang, X. How to fine-tune
bert for text classification? In China National Confer-
ence on Chinese Computational Linguistics, pp. 194–206.
Springer, 2019.

Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., and Lin, C.-W.
Deep learning on image denoising: An overview. Neural
Networks, 2020.

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L.
Beyond a gaussian denoiser: Residual learning of deep
cnn for image denoising. IEEE transactions on image
processing, 26(7):3142–3155, 2017.

Zhou, C., Zhang, J., Liu, J., Zhang, C., Fei, R., and Xu, S.
Perceppan: Towards unsupervised pan-sharpening based
on perceptual loss. Remote Sensing, 12(14):2318, 2020.

https://openreview.net/forum?id=kDF4Owotj5j
https://openreview.net/forum?id=kDF4Owotj5j
https://www.speechmatics.com/blog/machine-learning-is-getting-big-part-i/
https://www.speechmatics.com/blog/machine-learning-is-getting-big-part-i/


Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Figure 5. We plot PSNR for various amounts of Gaussian noise,
and find that Gaussian noise does not improve extrapolation, as
errors do not decrease or change past the training regime.

9. Appendix

A. Experimental Setup
We run baseline models on Google Colab, and run our deep-
thinking models using a Red Hat Enterprise 7.9 server with
2 CPUs on an Intel Xeon E3-12xx v2 processor, with 40
GB of RAM and 1 16GB GPU. When using filters and
variations of the loss function, we let λ = 0.08, γ = 0.8.
Additionally, we train using a learning rate of 3 ∗ 10−8, use
a cosine annealing scheduler, and train models width of 20
and depth 20. We additionally train all models for 20 epochs.
We train all models on noise level 0.1, which we define as
easy data, and test on data with noise level 0.3, which we
define as hard data. During training, deep-thinking models
are run for a max of 5 iterations. Each dataset is split into
80% training and 20% validation randomly.

B. Comparison of DT and Feedforward
Models

We compare DT and feedforward models for different values
of α. We find that a recurrent architecture improves over its
feedforward counterpart, while using fewer parameters. We
find that adding progressive loss decreases the PSNR after
5 iterations, but maintains that PSNR for more iterations.

Model Type Alpha PSNR 0.1 PSNR 0.3

FeedForward 0 24.93 19.92
0.5 24.65 19.43
1 23.63 19.03

Deep-thinking 0 25.61 21.03
0.5 24.89 20.06
1 24.83 19.93

Table 2. A comparison of DT and feedforward models for different
values of α.



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Figure 6. We find that feedforward models perform worse than deep-thinking models, and that adding progressive loss lead to stability
outside the train regime.

Figure 7. We show thought progressions for various additions to the model. Notice how similarity loss gradually removes noise from the
image.



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Figure 8. We visualize the feature activations produced by our recurrent block over the course of ten iterations for each model configuration.
The top subplot shows the mean spatial activations and the bottom subplot shows the mean channel activations. We observe that the
feature activations remain fairly static after the first few iterations of the recurrent block. Furthermore, we note that the feature activations
are focused on only a few areas of the foreground region.



Using Recurrent Architectures to Generalize From Easy to Hard Problems in Image Denoising

Figure 9. We visualize the feature gradients for the recurrent block for each model configuration and mask them over the original image.
We observe that much of the gradient activations are focused on the background regions (perhaps due to more noise there). Furthermore,
we note a potential failure of the median filter due to the highly saturated nature of the gradient activation maps.


